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For a typical resonant circuit with Q = 200, the transition

time is 14.6 ns when the oscillation frequency is 10 GHz.

Thus it is 146 times longer than the RF period. The cor-

responding modulation bandwidth is

f. 1.,.=; C=70 MHz.

Within thk modulation bandwidth any modulation can

be considered as the same as bias tuning. When the modu-

lating signal is close to and above this bandwidth, the modu-

lation sensitivity is expected to decrease. It is noted that

(7) is computed under the assumption I g~ I = (90/~RF).

For devices with different gd versus vRF characteristics,

the transition time will be different.

CONCLUSIONS

The tuning and modulation properties of transferred-

electron devices have been described. The device behavior

was characterized by its RF admittance which was cal-

culated from a large-signal analysis. The bias-tuning

characteristics were predicted from the device RF admit-

tance. The tuning characteristics of the device, the circuit

load, and the circuit Q factor are interrelated. Experi-

mental results were also given and compared with the

analysis. The modulation bandwidth was found to be

determined by the circuit Q factor, the oscillation fre-

quency, and the device-admittance versus RF-voltage

relationship. Within this modulation bandwidth, the bias-

modulation properties can be derived from the bias-tuning

characteristics. The modulation sensitivity y is independent

of the modulating frequency, but changes with bias voltage.
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Short Papers

The Method of Series Expansion in the Frequency

Domain Applied to Multidielectric Transmission Lines

A. F. DOS SANTOS AND J. P. FIGANIER

Absfract—In this short paper a method of expardng the phase

constant and the field of a multidielectric transmission line as

a power series of the frequency is developed. The method provides

a theoretical @ti&ation for the widely used g%tatic~> approximatirms

and indicates the reason why their accuracy is frequently good.

Thk expansion may also be useful for estimating an upper limit to

the frequency band in which the dispersion does not exceed a speci-

fied value. A numerical example is included.
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I. INTRODUCTION

Most practical strip transmission lines are structures in which

two dielectrics are present, one being air and the other a solid in-

sulator having small losses in the operating frequency range. The

solid dielectric has an electric permittivity different from that of

air and therefore ‘1’EM modes cannot propagate. 1ndependent TE

and TM modes are seldom possible, and in consequence, the propa-

gating modes in all practical two-dielectric strip lines are hybrid.

For the usual mode of operation, the lowest order one, the wave

equation tends to the two-dimensional Laplace equation as the fre-

quency tends to zero and hence the axial components should be small

compared with the transverse ones for sufficiently low frequencies,

making thk mode almost TEM. Interest thus arism in the charac-

teristics ?btained from static fields, namely a phase constant P =

u (LC) llz and a characteristic impedance ZO = (-L/C) lr~, where L

and C are, respectively, the inductance and capa~itance per unit

length.

In the following sections a method of field expal~sion as a power
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series of frequency is applied to solving Maxwel~s equations in a

lossless transmission line with an inhomogeneous dielectric. This

method makes impossible to calculate, byaniterative procedure, any

term of the power series from the knowledge of the static fields and

can be used to compute the deviation of the characteristics of the

lifie from their “static” approximations. Further the method pro.

videsatheoretical justification forthe widely used “static” approxi-

mations and indicates the reason why the accuracy of these approxi-

mations is frequently good. The radius of convergence of the power

series obtained will, in general, be finite. In any case, the method is

likely to be useful in M,ablishing the dispersion characteristics in

the low-frequency range.

II. FIELD EXPANSION AS A POWER

SERIES OF FREQUENCY

We shall be concerned with waves propagating along the z dhec-

tion (the line axis). Maxwell’s equations written in terms of trans-

verse and axial components are

where the common factor exp (jcot — jpz) haa been omitted as usual.

On the surface of each conductor the boundary conditions are

fix Et=O E. =0. (2)

In (1) and (2) the symbol e(?) emphasizes the variation of the di-

electric constant with transverse coordinates.

From the analytical form of (1) it is apparent that their solution

is frequency dependent; this means that it may be possible to express

it as a power series of the angular frequency w

Equations (1) are obtained assuming a time dependence of the

form exp (jot); if a is replaced by –w,,6 has to be replaced by –B to

maintain the same direction of propagation. Therefore, 6 is repre-

sented by a series of odd terms in co.1If the sign of w is reversed, all

field amplitudes remain the same apart from possible changes in

sign. Hence any of these amplitudes has to be represented by either

a series of even terms or a series of odd terms.

For the present transmission line problem we seek a solution

leading to nonzero transverse fields at zero frequency and hence

E,,H, will be represented by even series. ,!?@z will then be repre-

sented by series of odd terms according to (1).

From the analysis of (1) it can be seen that the other possible

solution (l?@~ represented by odd series and I?,,~, by even series)

is identically zero due to the fact that no static axial field components

can exist.

In the following, instead of expanding the field quantities in terms

of u, the nondimensional parameter ~ = Q/wO is used, w being a

convenient normalization frequency. For example the series for p

and I?* take the form:

Substituting into Maxwell’s equations the expansions for all fre-

quency-dependent quantities and equating terms of equal power in

Q, an infinite number of sets of equations successively coupled in an

iterative way is obtained. The first two sets of equations are written

as f Ollows.

Zero-Order Equatimzs

In the dielectric media:

I Only propagating modes, are considered.

Vtxlzo=o

Vt x Rio = o.

On the conductors:

73x Eto=o,

First-Order Equaticnw

In the dielectric media:

v~ x l?,l — jb& X l?to = — jwm~to

V~ X Hq — jb& X Hto = jme (?)I?tW (5)

On the conductors:

Ezl = o. (6)

Examination of the successive sets of equations shows that any
term of the seriee can be obtained from the knowledge of static fields
by successive iterations.

III. FORMULATION IN TRANSVERSE COMPONENTS

Henceforth we restrict the analysis to the usual situation in prac-

tice, for which the dielectric medium consists of a number of homo-

geneous regions. In thk case an alternative formulation involving

only the transverse field components can be obtained either by the
method of the preceding section or directly from the wave equation
for harmonic fields. In fact the Helmholtz equation holds in each of
the homogeneous regions and an iterative set of equations involving
only transverse fields can be obtained dkectly from that equation. It
is also assumed that the line has only two conductors.

Bearing in mind that the transverse fields are represented by series

of even terms, we have

VtzAto = o (7a)

(7b)vtz~ ~z= (b# – Q02e/J) /i ~

where ~ represents one of the fields ~ or H.

On the boundaries separating the different dielectric regions the

fields are subject to the usual conditions of continuity of the tangen-

tial components. These can be completely expressed in terms of

E, or ~, taking the form:

~,(l) s ~,(,)

JI)-lJn(I) = .J2)&(2)

dE. dEn._
xl W ~

($=)1=(%”32

‘(2)(%31=’(1)(=32

(3)

(4)

(8a)

(8b)

where the symbols have the meaning given in Fig. 1. The conditions

(8) are imposed on each term of the series expansion of the field.

IV. INFLURNCE OF THE FREQUENCY

CHA~CTERISTIG OF THE GENERATOR

It should be noted that the amplitude of the generator at a partic-

ular frequency and its frequency dependence are not known a priori;

this is equivalent to saying that all field components are determined

to within a factor which is an arbitrary function of the frequency.
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Fig. 1. Symbols used in (S).

To make the problem completely determined we may, for example,

impose that the amplitude of a line integral of the field ~~ between

the conductors be independent of the frequency or, alternatively,

we may impose the same condition on the current flowing in one of

the two conductors. Obviously, we are free to impose only one of

these conditions. Mathematically this is due to the fact that the

two line integrals are related [see (14) and (15) in Section VI].

As far as the series expansions are concerned, the arbitrariness of

the function defining the generator appears in the analysis in two

ways: 1) the amplitude of either H~O or EiO is arbitrary; 2) an arbi-

trary static field satisfying the boundary conditions (8) can be added

to any term of the series defining either H~ or .l?~. Considering, for

example, the field Hi, it is clear that if ~~2 satisfies (7b) together with

boundary conditions (8b) and if ~,,f”j is a static field satisfying (8b),

the sum H~2 + ~~2@ satisfies both (7b) and (8b). But, if we impose,

for example, that the current flowing in conductor 1 remain constant

with frequency, Hf2(0) is immediately determined.

The different choices of the function of the frequency defining the

generator correspond to different series expansions for the field com-

ponents, but the physics of the problem make it obvious that the

series expansion for the phase constant must be unique.

V. QUASI-TEM LINE PARAMETERS

The zero-order equations (3) and (4) represent static fields. These

fields have vanishing transverse curl and ti-ansverse divergence in the

dielectric media and are nonzero due to the existence.of surface charge

and current on the conductors.

The first-order equations (5) together with the zero-order set,

give the first approximation to the propagating field. From these

equations the first terms in the power series expansion of the trans-

mission-line parameters, are determined below.

Cross multiplying the first of equations (5) by z., and integrating

along a path ending on the conductors (Fig. 2), we obtain

b,
/

Eto.iii = ~Ofi
J

Hmdl.
AB AB

Here H. is the component of ~,. perpendicular to the integration

path. The first integral is equal to the voltage between the conduc-

tors. The second integral is identified as the magnetic flux per unit

length. Hence

blVO = COO.LOZO (9)

in which LO is the static inductance per unit length.

From the second of equations (5) but now using a path enclosing

a conductor (Fig. 2) we obtain in a similar way the relation

bJO = uoCoVe (lo)

where CO is the static capacitance per unit length. Multiplication of

(9) by (10) yields

b, = U, (LoCO) 1/2. (11)

From (9) and (10) the following expression for the characteristic

impedance is obtained:

(12)

Expressions (11) and (12) provide a theoretical justification for

the widely used static approximation and are in agreement with

f%

C2 B
di

E

@

/-.

o

‘\, @
Al

\ c,. ‘)

\
----

Fig. 2. Integration paths for deriving (9) and (10).

experimental results as well as with recent numerical results obtained

for rnicrostrip lines [1].

VI. HIGHER ORDER TERMS

From a practical point of view the interest in carryin~; out the anal-

ysis beyond the first-order terms is mainly to determine the dispersion

characteristics of the transmission line. In this respect the term bs in

the P series is the most important. In fact, an upper limit to the fre-

quency of operation of the line can be obtained from b~ once the maxi-

mum time delay between the components of lowest and highest fre-

quency of the signal has been chosen.

The coefficient bj is obtained from the thkd-order equations:

Next we integrate (13a) along a path coinciding with the boundary

of a conductor, obtaining:

where

are the zero-order and second-order terms in the serie $ expansion of

the current flowing in conductor Cl.

In a similar way, integration of (13b) along a path ending on the

conductors yields:

where

It should be noted that one of the equations (14) and (15) alone

is not sufficient to determine b~, as one of these equations givea simply

a relation between the line integrals of ~~ and HO

As pointed out in Section IV the series for P is unique despite the

fact that the choice of the frequency dependence of a line integral of

either .??~or H8 is arbitrary.

VII. NUMERICAL EXAMPLE

A numerical example is presented with a view to assess the speed

of convergence of the expansion for e. A very simple structure was

chosen for which the dkpersion equation is known anidytically thus

making it possible to compare the exact values of ~ ]btained from

the d~persion equation with those corresponding to its expansion in

powers of CO.This s trncture is a two-dielectric parallel-plane line,

whose transverse section is represented in Fig. 3; it is assumed that

the fields exhibit no z variations (~/8x = O).

We shall consider the mode which propagates down to zero fre-
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y////////////////////
(2)

‘f ,P

Y=d

y==

Y=o

Fig. 3. Two-dielectric transmission line considered in the example of

Section VII.

TABLE I

~ = 2 bl = 0.241840E02b 3=().736682E02 fJS=O.964940E05

j (GHz) 8 (m-’) RI (m-’) R, (m-’) R, (m-’)

0.5 12.093 0.001 0.000 0.000
24,191 0.007 0.000 0.000

; 48.427 0.059 0.000
3

0.000
72.753 0.201 0.002 0.000

4 97.217 0.481
5 121.870 0.950
6 146.766 1.662
7 171,963 2.676
8 197.523 4.051

22.3.504 5.848
1: 249.963 8.124

0.010 0.000
0.029 –0.001
0.071 –0.004
0.149 –0.013
0.279 –0.037
0.478 –0.092
0.757 –0.208

f (GHz)
10

8

4

2

0 200 400 600 800

P (m+)

Fig. 4. Power series approximations to the phase constant of the line

represented in Fig. 3.

quency; thk is a TM mode with components H= = H, Ev, and En.

A standard procedure enables us to obtain the dispersion equation:

~(l)
tan (k%) = ~(,) tan ~k@j(d – al

~(1) 42)

where superscript (1) refers to the dielectric layer O < y < a and

superscript (2) to the dielectric layer a < y < d and for each layer

k~ = U%PO – ,8’.

Next the first three coefficients of the expansion for & that is

b,, b~, and bs, were calculated, the last one with the sole purpose of

assessing the speed of convergence.

The coefficients were obtained by the method developed in Sec-

tions V and VI, using the zero-order coefficient Ho e..sthe scale con-

stant and imposing a frequency-independent current in the con-

ductor y = O.

The numerical computation was carried out for two cases corre-

sponding to the following parameters:

d=lcm

a = 0.5 cm

@ = vacuum permittivity

The normalization frequency fO = ao/27r was taken to be 1 GHz.

For @/# = 2 the results are given in Table I; examination of

this table shows that the error RE is less than 1/1000 of B within the

frequency range considered.

For #)/#) = 20 the results are shown in Fig. 4; it is seen that the

accuracy of the approximation degrades very quickly from the point

where RE changes from positive to negative.

VIII. CONCLUSIONS

In the preceding sections it has been shown that for a transmission
line with two conductors and a dielectric medium consisting of various
homogeneous regions it is possible to expand all field functions as a

power series of the frequency.
The main interest of this expansion appears to be the possibility

of estimating an upper limit to the frequency band in which the dk-

persion does not exceed a specified value.

In this short paper the analysis has been confined to general as-

pects of the proposed expansion. The problem of computing the

higher order terms for transmission lines of practical interest has not

been considered.

ACKNOWLEDGMENT

The authors wish to thank Prof. J. Brown of Imperial College for

giving the initial idea of expanding the fields as a power series of ~

and for making useful comments on the manuscript.

REFERENCES

[1] D. G. Corr and J. B. Davies, “Computer analysis of the fundamental

and higher order modes in single and coupled microstrip, ” IEEE

Trans. Microwave Theoru Tech., vol. MT T-20, PP. 669–678, Oct.
1972.

Useful Matrix Chain Parameter Identities for the

Analysis of Multiconductor Transmission Lines

CLAYTON R. PAUL, MEMBER, IEEE

Abstract—By utilizing state variable theory, certain useful matrix

identities involving submatrices of the chain parameter matrix for
a multiconductor transmission line are shown. These ide~tities are
extensions of familiar properties associated with two-conductor
lines to multiconductor lines and are used to formulate the complete

solution for the terminal currents when the line is terminated by
linear networks. The identities allow a simplified solution for these

currents and reduce numerous redundant time-consuming matrix
multiplications. In addition, the correspondence between f smiliar
terms for the two-conductor case and the multiconductor case is
shown.

I. INTRODUCTION

The subject of coupled transmission lines arises in the study of

many microwave related structures. Transmission lines in a homo-

geneous medium occur in the study of strip lines whereas applica-
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