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For a typical resonant circuit with @ = 200, the transition
time is 14.6 ns when the oscillation frequency is 10 GHz.
Thus it is 146 times longer than the RF period. The cor-
responding modulation bandwidth is

1
fm Imax ~ — ~ 70 MHz.
At

Within this modulation bandwidth any modulation can
be considered as the same as bias tuning. When the modu-
lating signal is close to and above this bandwidth, the modu-
lation sensitivity is expected to decrease. It is noted that
(7) is computed under the assumption | g; | = (go/Vrr).
For devices with different ¢g; versus Vgr characteristics,
the transition time will be different.

CONCLUSIONS

The tuning and modulation properties of transferred-
electron devices have been described. The device behavior
was characterized by its RF admittance which was cal-
culated from a large-signal analysis. The bias-tuning
characteristics were predicted from the device RF admit-
tance. The tuning characteristics of the device, the circuit
load, and the circuit § factor are interrelated. Experi-
mental results were also given and compared with the
analysis. The modulation bandwidth was found to be
determined by the circuit @ factor, the oscillation fre-
quency, and the device-admittance versus RF-voltage
relationship. Within this modulation bandwidth, the bias-
modulation properties can be derived from the bias-tuning
characteristics. The modulation sensitivity is independent
of the modulating frequency, but changes with bias voltage.
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The Method of Series Expansion in the Frequency
Domain Applied to Multidielectric Transmission Lines

A. F. pos SANTOS anp J. P. FIGANIER

Abstract—In this short paper a method of expanding the phase
constant and the field of a multidielectric transmission line as
a power series of the frequency is developed. The method provides
a theoretical justification for the widely used ¢‘static” approximations
and indicates the reason why their accuracy is frequently good.
This expansion may also be useful for estimating an upper limit to
the frequency band in which the dispersion does not exceed a speci-
fied value. A numerical example is included.
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I. INTRODUCTION

Most practical strip transmission lines are structures in which
two dielectrics are present, one being air and the other a solid in-
sulator having small losses in the operating frequency range. The
solid dielectric has an electric permittivity different from that of
air and therefore TEM modes cannot propagate. Independent TE
and TM modes are seldom possible, and in consequence, the propa-
gating modes in all practical two-dielectric strip lines are hybrid.

For the usual mode of operation, the lowest order one, the wave
equation tends to the two-dimensional Laplace equation as the fre-
quency tends to zero and hence the axial component:s should be small
compared with the transverse ones for sufficiently low frequencies,
making this mode almost TEM. Interest thus arises in the charac-
teristics obtained from static fields, namely a phase constant g8 =
w(LCYY? and a characteristic impedance Z, = (L/C)'%, where L
and C are, respectively, the inductance and capasitance per unit
length.

In the following sections a method of field expansion as a power
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series of frequency is applied to solving Maxwell’s equations in a
lossless transmission line with an inhomogeneous dielectric. This
method makes it possible to calculate, by an iterative procedure, any
term of the power series from the knowledge of the static fields and
can be used to compute the deviation of the characteristics of the
line from their “static’” approximations. Further the method pro-
vides a theoretical justification for the widely used “static’ approxi-
mations and indicates the reason why the accuracy of these approxi-
mations is frequently good. The radius of convergence of the power
series obtained will, in general, be finite. In any case, the method is
likely to be useful in establishing the dispersion characteristics in
the low-frequency range.

II. FIELD EXPANSION AS A POWER
SERIES OF FREQUENCY

‘We shall be concerned with waves propagating along the z direc-
tion (the line axis). Maxwell’s equations written in terms of trans-
verse and axial components are

Ve X By = — jopH.

Ve X H: = jue(A)E,

Ve X B, —jgi. X By = — jouH,

Vi X H, — j8a, X H; = jwe(F)E, 1)

where the common factor exp (jwt — jB8z) has been omitted as usual.
On the surface of each conductor the boundary conditions are

ﬂX.E-’g=O Eg=0. (2)

In (1) and (2) the symbol () emphasizes the variation of the di-
electric constant with transverse coordinates.

From the analytical form of (1) it is apparent that their solution
is frequency dependent; this means that it may be possible to express
it as a power series of the angular frequency w.

Equations (1) are obtained assuming a time dependence of the
form exp (jwl); if w is replaced by —w, 8has to be replaced by —g to
maintain the same direction of propagation. Therefore, 8 is repre-
sented by a series of odd terms in w.! If the sign of w is reversed, all
field amplitudes remain the same apart from possible changes in
sign. Hence any of these amplitudes has to be represented by either
a series of even terms or a series of odd terms.

For the present transmission line problem we seek a solution
leading to nonzero transverse fields at zero frequency and hence
E,H, will be represented by even series. E,,H. will then be repre-
sented by series of odd terms according to (1).

From the analysis of (1) it can be seen that the other possible
solution (%, H, represented by odd series and E.,H . by even series)
is identically zero due to the fact that no static axial field components
can exist.

In the following, instead of expanding the field quantities in terms
of w, the nondimensional parameter @ = w/wo is used, wo being a
convenient normalization frequency. For example the series for g
and E, take the form:

B8 = bQ 4 b Q2% A+ - ‘
Et = E'go -+ Et292 4 aee,
Substituting into Maxwell’s equations the expansions for all fre-
quency-dependent quantities and equating terms of equal power in
@, an infinite number of sets of equations successively coupled in an

iterative way is obtained. The first two sets of equations are written
as follows.

Zero-Order Equations

In the dielectric media:

1 Only propagating modes, are considered.
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Vi X Ey =0

Ve X Hy = 0. 3)
On the conductors:

7 X By = 0. 4)

First-Order Equations

In the dielectric media:
Ve X By — jbids X By = — joopeH
Ve X Hay ~ bid. X Hyy = jooe (F) By (5)
On the conductors:
E, =0. (6)

Examination of the successive sets of equations shows that any
term of the series can be obtained from the knowledge of static fields
by successive iterations.

III. FORMULATION IN TRANSVERSE COMPONENTS

Henceforth we restrict the analysis to the usual situation in prac-
tice, for which the dielectric medium consists of a number of homo-
geneous regions. In this case an alternative formulation involving
only the transverse field components can be obtained either by the
method of the preceding section or directly from the wave equation
for harmonic fields. In fact the Helmholtz equation holds in each of
the homogeneous regions and an iterative set of equations involving
only transverse fields can be obtained directly from that equation. It
is also assumed that the line has only two conductors.

Bearing in mind that the transverse fields are represented by series
of even terms, we have

VA, =0

VEAy = (b — wolen) A g

(7a)
(7b)

where A represents one of the fields £ or H.

On the boundaries separating the different dielectric regions the
fields are subject to the usual conditions of continuity of the tangen-
tial components. These can be completely expressed in terms of
E, or H, taking the form:

E.W = F,.@

DE,® = DF,®

3En | 9.
m |y o P
dE. OE; oE, OJF
(- .
ar o/, ar amn /,
7o = .o
H,W = H,®
oH, | _ oH,
om |, an |,
e<2> (aHn _OH)\ _ 0 oH, oH, (8h)
ar an J, or an f,

where the symbols have the meaning given in Fig. 1. The conditions
(8) are imposed on each term. of the series expansion of the field.

IV. INFLUENCE OF THE FREQUENCY
CHARACTERISTIC OF THE GENERATOR

It should be noted that the amplitude of the generator at a partic-
ular frequency and its frequency dependence are not known g priors;
this is equivalent to saying that sll field components are determined
to within a factor which is an arbitrary function of the frequency.
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Fig. 1. Symbols used in (8).

To make the problem completely determined we may, for example,
impose that the amplitude of a line integral of the field B, between
the conductors be independent of the frequency or, alternatively,
we may impose the same condition on the current flowing in one of
the two conductors. Obviously, we are free to impose only one of
these conditions. Mathematically this is due to the fact that the
two line integrals are related [see (14) and (15) in Section VI].

As far as the series expansions are concerned, the arbitrariness of
the function defining the generator appears in the analysis in two
ways: 1) the amplitude of either Hy, or £, is arbitrary; 2) an arbi-
trary static field satisfying the boundary conditions (8) can be added
to any term of the series defining either H; or E,. Considering, for
example, the field H,, it is clear that if A, satisfies (7b) together with
boundary conditions (8b) and if H,,© is a static field satisfying (8b),
the sum H,, + H,©® satisfies both (7b) and (8b). But, if we impose,
for example, that the current lowing in conductor 1 remain constant
with frequency, H;,© is immediately determined.

The different choices of the function of the frequency defining the
generator correspond to different series expansions for the field com-
ponents, but the physics of the problem make it obvious that the
series expansion for the phase constant must be unique.

'V. QUASI-TEM LINE PARAMETERS

The zero-order equations (3) and (4) represent static fields. These
fields have vanishing transverse curl and transverse divergence in the
dielectric media and are nonzero due to the existence of surface charge
and current on the conductors.

The first-order equations (5) together with the zero-order set,
give the first approximation to the propagating field. From these
equations the first terms in the power series expansion of the trans-
mission-line parameters, are determined below.

Cross multiplying the first of equations (5) by a., and integrating
along a path ending on the conductors (Fig. 2), we obtain

blf E"to’&i bt (4!0}4/ Hndl.
AB AB

Here H, is the component of H,, perpendicular to the integration
path. The first integral is equal to the voltage between the conduc-
tors. The second integral is identified as the magnetic flux per unit
length. Hence

b1V = woLolo (9)

in which Lo is the static inductance per unit length.
From the second of equations (5) but now using a path enclosing

a conductor (Fig. 2) we obtain in a similar way the relation
blIo = woCoVo (10)

where C, is the static capacitance per unit length. Multiplication of

(9) by (10) yields ,

bl = wo(LoCo)1/2. (11)

From (9) and (10) the following expression for the characteristic
impedance is obtained:

(12)

Expressions (11) and (12) provide a theoretical justification for
the widely used static approximation and are in agreement with
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Fig. 2. Integration paths for deriving (9) and (10).

experimental results as well as with recent numerical results obtained
for microstrip lines [1].

V1. HIGHER ORDER TERMS

From a practical point of view the interest in carrying out the anal-
ysis beyond the first-order terms is mainly to determine the dispersion
characteristics of the transmission line. In this respect the term. b; in
the B series is the most important. In fact, an upper limit to the fre-
quency of operation of the line can be obtained from b; once the maxi-
mum time delay between the components of lowest and highest fre-
quency of the signal has been chosen.

The coefficient b; is obtained from the third-order equations:

(13a)
(13b)

ViH s + (il + bsll ) = joge(F)a. X By

Vths + j(blE-tg -+ baEzo) = - jwoﬂdz X sz-

Next we integrate (13a) along a path coinciding with the boundary
of a conductor, obtaining:

buls + bslo = wo f (P By X &.+dl (14)

c1

where

Io = f Hoedl I = f y-dl
o 1

are the zero-order and second-order terms in the series expansion of
the current flowing in conductor C;.
In a similar way, integration of (13b) along a path ending on the
conductors yields:
biVs + Vo = wop Hy X @.odl
AB

(15)

where

vim [ Eed vi- e
4B AB

It should be noted that one of the equations (14) and (15) alone
is not sufficient to determine by, as one of these equatiors gives simply
a relation between the line integrals of E, and H..

As pointed out in Section IV the series for 8 is unique despite the
fact that the choice of the frequency dependence of a line integral of
either & or H, is arbitrary. '

VII. NUMERICAL EXAMPLE

A numerical example is presented with a view to assess the speed
of convergence of the expansion for 8. A very simple structure was
chosen for which the dispersion equation is known analytically thus
making it possible to compare the exact values of g nbtained from
the dispersion equation with those corresponding to its expansion in
powers of w. This structure is a two-dielectric parallel-plane line,
whose transverse section is represented in Fig. 3; it is assumed that
the fields exhibit no z variations (8/dz = 0).

We shall consider the mode which propagates down to zero fre-
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Fig. 3. Two-dielectric transmission line considered in the example of
Section VII.
TABLE 1
x =2 by = 0.241840E 02b; = 0. 736682 E 02 b; = 0. 964940 E 05
f (GHz) B (m™) Ri(m™)  Rs(m™) Rs (m™)
0.5 12.093 0.001 0.000 0.000
1 24,191 0.007 0.000 0.000
2 48.427 0.059 0.000 0.000
3 72.753 0.201 0.002 0.000
4 97.217 0.481 0.010 0.000
5 121.870 0.950 0.029 —0.001
6 146.766 1.662 0.071 —0.004
7 171.963 2.676 0.149 —-0.013
8 197.523 4.051 0.279 —-0.037
9 223.504 5.848 0.478 —0.092
10 249.963 8.124 0.757 —0.208

Note: B, = B - b19 Ry =8 — (blﬂ +b393) R: =8 — (le +
b3 + b:Q5).

1(GHz} 3
10 - %1 //b,n b,m»lg/,, B
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B(m—1)
Fig. 4. Power series approximations to the phase constant of the line

represented in Fig. 3.

quency; this is a TM mode with components H, = H, E,, and E..
A standard procedure enables us to obtain the dispersion equation:

tan (kWa) ® tan [k®(d — a}
0 - €@

A

where superseript (1) refers to the dielectric layer 0 <y < a and
superscript (2) to the dielectric layer ¢ < y < d and for each layer

k? = wlieuo — B2

Next the first three coefficients of the expansion for g, that is
by, bs, and bs, were calculated, the last one with the sole purpose of
assessing the speed of convergence.

The coefficients were obtained by the method developed in Sec-
tions V and VI, using the zero-order coefficient H, as the scale con-
stant and imposing a frequency-independent current in the con-
ductor y = 0.

The numerical computation was carried out for two cases corre-
sponding to the following parameters:

d=1cm
a = 0.5 cm
e® = vacuum permittivity
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x = D/e® = 2;20.

The normalization frequency fo = wo/27 was taken to be 1 GHaz.
For ¢ /e® = 2 the results are given in Table I; examination of
this table shows that the error E; is less than 1/1000 of 8 within the
frequency range considered.
For ®/e® = 20 the results are shown in Flg 4; it is seen that the
accuracy of the approximation degrades very qulckly from the point
where E; changes from positive to negative.

VIII. CONCLUSIONS

In the preceding sections it has been shown that for a transmission
line with two conductors and a dielectric medium consisting of various
homogeneous regions it is possible to expand all field functions as a
power series of the frequency.

The main interest of this expansion appears to be the possibility
of estimating an upper limit to the frequency band in which the dis-
persion does not exceed a specified value.

In this short paper the analysis has been confined to general as-
pects of the proposed expansion. The problem of computing the
higher order terms for transmission lines of practical interest has not
been considered.
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Useful Matrix Chain Parameter Identities for the
Analysis of Multiconductor Transmission Lines

CLAYTON R. PAUL, MEMBER, IEEE

Abstract—By utilizing state variable theory, certain useful matrix
identities involving submatrices of the chain parameter matrix for
a multiconductor transmission line are shown. These identities are
extensions of familiar properties associated with two-conductor
lines to multiconductor lines and are used to formulate the complete
solution for the terminal currents when the line is terminated by
linear networks. The identities allow a simplified solution for these
currents and reduce numerous redundant time-consuming matrix
multiplications. In addition, the correspondence between familiar
terms for the two-conductor case and the multiconductor case is
shown.

I. INTRODUCTION

The subject of coupled transmission lines arises in the study of
many microwave related structures. Transmission lines in a homo-
geneous medium ocecur in the study of strip lines whereas applica~

Manuscript received January 30, 1975; revised April 9, 1975. This
work was supported by the U. 8. Air Force Systems Command, Rome
Air Development Center, Electromagnetic Compatibility Branch
(Project 4540), Griffiss AFB, N. Y., under Contract F-30602-72-C-
0418. C. R. Paul is a participant in the Postdoctoral Program, Rome
Air Development Center.

The author is with the Department of Electrical Engineering, Uni-
versity of Kentucky, Lexington, Ky. 40506.



